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EXECUTIVE SUMMARY 

Maximum Likelihood Detection Algorithm 

The description of a maximum likelihood algorithm to detect moving targets in electro-optic 
data is presented. The algorithm is evaluated in terms of the probabilities of false alarm and detec- 
tion. A comparison of theoretical and experimental probability distributions for single normalized 
pixels shows good agreement. Similarly, a comparison of theoretical and experimental false alarm 
probabilities also shows good agreement. These results validate using theoretical models to predict 
algorithm performance. Several detection examples are shown. 

The data sets compared against theory are obtained from different sensor types, wavebands, 
and clutter backgrounds. The Experimental Test System sensor provides visible band data from 
a staring sensor. The background clutter in these data sets consists of stars and other deep space 
objects. The Infrared Measurements Sensor (IRMS) provides long and medium wavelength infrared 
data from a scanning sensor. Background clutter in the IRMS data sets consists of sky, mountains, 
hills, and desert. 

Binary Integration Algorithm and Architecture 

A binary integration version of this algorithm is described and evaluated in terms of false 
alarm and detection probabilities. This version is suboptimum and is compared with the optimum 
algorithm to determine the performance loss. A processing architecture concept is also described. 

Conclusion 

The model used in the maximum likelihood algorithm development is shown to closely agree 
with experimental data when the clutter background has temporally stationary statistics. An 
accurate model allows the algorithm performance (probabilities of detection and false alarm) to 
be precisely predicted. Potential areas for future work include: (1) development of processing 
architectures and efficient algorithm implementations for fast computation, (2) inclusion of target 
signal (signal-to-noise ratio) statistics in the model to investigate improved algorithms, and (3) 
investigation of frame registration issues and techniques. 

Maximum Likelihood Algorithm Derivation 

An algorithm to detect moving targets in electro-optic data is derived for the case where the 
data samples have Gaussian (normal) distributions that are temporally stationary (frame to frame) 
and spatially nonstationary (pixel to pixel). In other words, the means and variances describing 
the data samples are assumed to vary among pixels according to the background scene but remain 
constant over time. Additionally, these underlying means and variances are presumed unknown. 
Targets are assumed to have an arbitrary distribution. 
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Single Pixel Probability Distributions 

The probability distribution of a single normalized pixel (used in the likelihood function) is 
derived. This distribution is used elsewhere to derive the theoretical probabilities of false alarm 
and detection. 

In the case of noise-only (no target), the probability distribution is shown to be an instance of 
a beta distribution. With a target present, the probability distribution is a noncentral beta distri- 
bution. These distributions depend on the background clutter scene only through the noncentrality 
parameter, which is proportional to the signal-to-noise ratio. 

Likelihood Function Statistics 

The probabilities of false alarm and detection are derived for the maximum likelihood detec- 
tion algorithm. Evaluation of these probabilities is accomplished through numerical integration. 
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1.   MAXIMUM LIKELIHOOD DETECTION ALGORITHM 

An algorithm to detect moving targets in electro-optic data is developed and analyzed. In 
such data moving targets are distinguished by their motion relative to a fixed background scene 
(clutter). Unresolved targets may appear as a "streak" in a single image frame collected with a 
staring sensor or as a dot in a single image frame from a scanning sensor. A sequence of images 
can be used to distinguish between clutter and targets. 

A maximum likelihood algorithm is derived to detect a target with an arbitrary signal distri- 
bution against unknown clutter. A consequence of this algorithm is that detection thresholds may 
be set according to a given false alarm rate without knowledge of the background clutter scene. 
Experimental false alarm performance is compared against the theoretical predictions and found 
to closely agree. 

The data used to test this algorithm are obtained from two sensors developed at Lincoln 
Laboratory. The Experimental Test System (ETS) sensor is a visible band staring sensor that is 
ground-based and typically used to detect moving objects against a nighttime stellar background. 
In these data clutter consists of stars and other deep space objects as well as atmospheric effects, 
notably clouds. Figure 1 shows an unprocessed image from the visible band test data sequence. A 
pseudocolor mapping indicates intensity. 

The Infrared Measurements Sensor (IRMS) is a scanning sensor that collects both long wave- 
length infrared (LWIR, 8 to 12 fim) and medium wavelength infrared (MWIR, 3 to 5 /zm) data. 
This sensor is typically used with a clutter background of sky, mountains, desert, and forest. Both 
sensor types work well with this algorithm. Figures 2 and 3 show unprocessed images from three 
of the IR test data sequences. Again, a pseudocolor mapping indicates intensity. 

The technical discussion that follows is divided into four parts. A statement of the maximum 
likelihood detection algorithm is given first. The theoretical probability distribution of normalized 
data is second with a comparison of the theoretical and experimental results. The theoretical 
probability of false alarm and false alarm rate are third, also with a comparison of the theoretical and 
experimental results. The final section presents the theoretical detection probability and includes 
several detection examples. 

1.1     Signal Model and Algorithm 

The maximum likelihood moving target detection algorithm is derived under the assump- 
tion that data samples collected from a sequence of image frames are independent, normally (i.e., 
Gaussian) distributed random variables. In the absence of targets, these samples are modeled as 
stationary in time but nonstationary in space. In other words, the means and variances of the data 
samples are assumed to vary from pixel to pixel, but for a single pixel they are constant over time. 

The motivation for an independent normal statistics model is based on assumptions of (1) 
independent thermal and readout sensor noise and (2) independent arrival of photons to each 



Figure 1.    Single unprocessed frame of ETS Magellan data. 



Figure 2.    Single unprocessed frame of IRMS Longjump data. 

Figure S.    Single unprocessed frame of IRMS Dugway data. 



detector (a Poisson random variable that may be approximated as normal). Assuming stationarity 
over time implies assuming that all frames in a sequence are spatially registered and that there is 
no moving clutter. Nonstationary spatial statistics correspond to the nonuniform intensity of the 
background scene. 

An equivalent viewpoint is to consider the mean for a given pixel to be the image intensity in 
that pixel and the variance to correspond to the (photon plus thermal) noise level. The indepen- 
dence of samples then corresponds to each sample having an independent noise component, while 
the means correspond to the imaged scene. 

The log-likelihood function C (which results from this data model) follows, where r, j^ is tne 

data sample in row i, column j, frame k, and N is the number of frames available (see Appendix A). 

£   =     £   4JJ, (i) 
(«J,*)€S 

4u» =  tea ~ *v)a (2) 

j  JV-l 

&J     =     T7 £ nj,n (3) 
n=0 

a2 h    =    iD^-K;)2 (4) 
Nr> 

The exact underlying means and variances are mj and a?   and are presumed unknown.  Target 
detection is accomplished by comparing £ to a threshold. 

Set 5 is the set of space (i,j) and time (k) indices that corresponds to the target motion 
hypothesis. As an example, consider a target that moves with speed v pixels/s in the (i,j) plane 
at an angle 0. For a frame-to-frame period of T s, set S is 

5 = {(i + vTkcos(6), j + vTksin(6), k); k = 0,...,N -1}        , (5) 

where the noninteger coordinates are rounded to the nearest integer values. 

1.2     Single Pixel Statistics 

The term d^,* in the formula for the log-likelihood function is referred to as the "normalized" 
data. Selection of detection thresholds and the resulting probabilities of false alarm and detection 
depend on the statistics of dijjt and £• The theoretical distribution .fd(x|./V) of d,,j,jt has been 
derived and shown to be an instance of the beta distribution (see Appendix B). 



*M*>-ft(3£i|5.*T1) (6) 

It is interesting to note that the statistics of dijjt depend only on the number of frames processed 
and not on the terms mj and a2 • related to the specifics of the background clutter. Thus the 
effects of clutter are removed from determination of false alarm rates. 

Clutter does have an effect on the single pixel statistics when targets are present. The pixel 
variance a2 • is the noise component of the signal-to-noise ratio (SNR) and is related to the pixel 
mean ft;. (Specifically, if the data values were the number of photons received, then the mean and 
variance of a pixel would be equal.) It is shown in Appendix B that an instantaneous signal-to-noise 
ratio SNRj = s2/a2 can be defined, where s is the target amplitude component of the unnormalized 
pixel data, and a2 is the noise power component. Then the conditional distribution for a single 
normalized pixel is the noncentral beta distribution 

f    x       1    N — 2   N — 1 \ 
F,(x|JV,SNRi) = FB, (J-J -, -^-, S—± • SNRj J . (7) 

Figure 4 shows the theoretical normalized pixel probability distribution for various values of SNRj 
[expressed in decibels, lOlog(SNRj)]. 

A comparison of theory with empirically derived statistics can be used to validate the data 
model and the use of the resulting maximum likelihood detection algorithm. Figures 5 through 
7 compare the theoretical distribution for a single normalized pixel and experimentally derived 
distributions for a variety of image sequences. These comparisons are done for the noise-only case 
(no target). 

Figure 5 compares theory and experiment for 15 frames of visible band data obtained from 
the ETS sensor, which is a ground-based staring sensor, looking at a background of stars. Although 
the stellar background is spatially nonstationary, there is good agreement between the two curves. 

Figure 6 compares theory and experiment for 10 frames of the Longjump LWIR data obtained 
from the IRMS scanning sensor, which is looking at a background of sky, mountains, and hills. 
Again, there is good agreement. 

Figure 7 compares theory with 10 frames of LWIR data from Dugway, obtained from the 
IRMS sensor. Background clutter includes sky, mountains, and desert. Departure from theory is 
due in part to frame registration errors but may include other transient (time varying) interference 
as well. In general, data that are not temporally stationary will disagree with this theory. 

1.3     False Alarm Statistics 

Once the single pixel statistics are known, it is possible to determine the theoretical probability 
of false alarm and compare this theory to experimental data.   The probability of false alarm is 
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Figure 4-     Theoretical normalized pixel probability distribution for different SNRj. 
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Figure 5.    Single normalized pixel probability distribution of ETS Magellan data. 
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Figure 6.    Single normalized pixel probability distribution of IRMS Longjump data. 
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Figure 7.    Single normalized pixel probability distribution of IRMS Dugway data. 
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defined as the probability that the log-likelihood function will exceed the detection threshold when 
no target is present. System false alarm rate is determined by combining the probability of false 
alarm with the number of pixels, the number of velocity hypotheses tested, and the data collection 
time. 

Using the definitions 

Np = number of pixels in one frame 

Nv = number of velocity hypotheses 

N = number of image frames processed 

T = time to collect one image frame 

t = detection threshold 

R = false alarm rate, 

the false alarm rate may be determined as the number of false alarms per second from the formula 

NpNvPi{C>t\N} 
R ~ NT ' (8) 

The probability term Pr{£ > t\N} is computed as the TV-fold convolution of single pixel density 
functions fa with the complement of a unit step function s(x). 

?T{C>t\N} = fd* ••• + /* *(l-s)(t) (9) 

This computation is implemented using numerical integration on the beta density functions (see 
Appendix C). 

As an example of the false alarm rate, testing 1,000 velocity hypotheses on 10 frames of IRMS 
data results in 

(400 x 3480) x 1000 x 10"8 ,    , R = iki  (10) 

=    1.392 false alarms/s. (11) 

The detection threshold t is assumed to be chosen so that the probability of a false alarm from a 
single target position and velocity test is 10-8. The full frame of the IRMS data is used with a 
corresponding collection rate of 1 frame/s. 
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The validity of the false alarm rate calculation depends on the accuracy of the probability of 
false alarm term in the expression for R. For the probability of false alarm term to show agreement 
between theory and experiment at a level of 10"8, the theoretical and experimental probability 
distributions (i.e., Pr{£ < t\N} — 1 - Pr{£ > t\N}) of the log-likelihood function should agree to 
eight significant digits. 

Theoretical and experimental probabilities of false alarm are compared in Figures 8 through 
10. Experimental probabilities are determined by testing 104 velocity hypotheses on 1.8 x 105 pixels 
of the visible band data and 1.4 x 105 pixels of IR data. Thus the total number of hypotheses tested 
for each experiment is approximately 109. For each data set, a histogram is formed from the values 
of the log-likelihood function for these trials. The probability curve is then easily computed from 
the histogram. 

Figure 8 shows false alarm statistics for 15-frame processing of the ETS Magellan visible band 
data set, and Figure 9 shows 10-frame processing of IRMS Longjump LWIR data. These data sets 
show good agreement between theory and experiment (the two curves are difficult to distinguish!). 
Specifically, the two curves agree at probabilities down to at least 10~8. Figure 10 shows 10-frame 
processing of IRMS Dugway LWIR data. 
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Figure 9.    False alarm probability for IRMS Longjump data. 
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1.4    Detection Probability and Examples 

As noted in Appendix C, the probability of detection depends on the SNR of the normalized 
pixels summed in the velocity hypothesis. The exact SNR distribution depends on the background 
clutter and is difficult to specify. 

A simple case of the SNR distribution for uniform background clutter is discussed in Ap- 
pendix C. Assuming that the dominant noise component is photon noise, the noise variance (power) 
of a pixel is proportional to the mean, which in turn corresponds to the pixel intensity. Thus the 
noise component of the SNR depends on the background clutter scene. The signal (target) compo- 
nent is also derived from a photon count and in the absence of other fluctuations gives a noncentral 
chi-square distribution. For uniform intensity background clutter the SNR distribution can be 
modeled as a constant times a chi-square random variable. For this simple case the detection prob- 
abilities depend on both the SNR and the target signal power. Other SNR models also depend on 
the clutter intensity distribution. 

As an example, Figure 11 shows the theoretical probability of detection when the same number 
of target photons are received in each pixel, and a2 is identical across all pixels. In other words, 
SNRj is assumed constant. In this case, N = 10 frames are assumed to be processed. 

In the detection examples that follow, an effective signal-to-noise ratio, SNRe^, is estimated 
from the data. This value is denned as the value of SNRj, which has a normalized pixel mean 
(expected value) equal to the sample average of normalized pixels along the hypothesized target 
path. These two pixel quantities are not the same, because the expected value is determined for 
a single value of SNRj = s2/a2, and the sample average is determined from data where both s2 

and a2 vary among pixels. Thus the term "effective SNR" is used. Figure 12 shows the normalized 
pixel mean as a function of SNRj for 10- and 15-frame processing. 

Figure 13 shows a detection example for the ETS Magellan visible band data set. Approxi- 
mately 600 velocity hypotheses are applied to these data (418 x 420 pixels/frame). The false alarm 
rate for a single hypothesis test is set to 10-8, and the expected number of false alarms is 0.9. 
(The target motion hypothesis is required to fit entirely within the data in this experiment, so that 
not all combinations of position and velocity are used.) The estimated values of SNRefj for these 
targets are 10.3 and 15.3 dB. 

Figure 14 shows a detection example for the IRMS Longjump LWIR data set. Approximately 
1,000 velocity hypotheses are applied to a 400 x 400 subimage of the data. The false alarm rate for 
a single hypothesis test is set to 10-8, and the expected number of false alarms is 1.4. (As above, 
not all combinations of position and velocity are used.) The estimated value of SNRefj for this 
target is 17.3 dB. 

Figure 15 shows a detection example for the IRMS Dugway LWIR data set. Approximately 
1,800 velocity hypotheses are applied to a 400 x 500 subimage of the data. The false alarm rate for 
a single hypothesis test is set to 10-8, and the expected number of false alarms is 1.4. (Again, not 

14 
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all combinations of position and velocity are used.) The upper detection is a target, and the lower 
detection is a false alarm. The estimated value of SNReff for the actual target is 9.5 dB. 

Target-related false alarms can occur when a hypothesized target path intersects the actual 
path of a strong target. From Equation (1) it is clear that a single, strong, normalized pixel can 
cause the log-likelihood function C to exceed a detection threshold. One way to reduce the false 
alarms related to strong targets and clutter discretes is to impose a model of the target statistics in 
the likelihood function derivation. This approach has the disadvantage of depending on the target 
and clutter models, as well as resulting in a much more complex formula for the log-likelihood 
function. A different approach is to require that any detection also has at least a certain number of 
strong pixels. This concept is the basis for the binary detection algorithm discussed in Section 2. 
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(a) 

(b) 

Figure 13.     Target detection for ETS Magellan data,   (a) Detected target locations,   (b) 
Extrapolated target motion. 
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(a) 

(b) 

Figure 14-     Target detection for IRMS Longjump data, (a) Detected target locations, (b) 
Extrapolated target motion. 
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(a) 

(b) 

Figure 15.    Target detection for IRMS Dugway data,  (a) Detected target locations,  (b) 
Extrapolated target motion. 
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2.   BINARY INTEGRATION ALGORITHM AND ARCHITECTURE 

For many applications, the algorithm discussed in Section 1 is computationally intensive. 
This section describes an algorithm for a binary integration approach to velocity filtering. Binary 
integration is of interest as a means of reducing both memory and computation rate requirements 
at a small loss (typically less than 2 dB) in processing gain. Also presented is an implementation 
architecture that is suitable for a small applications specific integrated circuit (ASIC), which could 
be attached to a general purpose signal processor. 

An overview and performance measures of binary integration are given in Section 2.1. The 
algorithm is described mathematically in Section 2.2. An architecture for efficient implementation 
is described in Section 2.3. Extension of this algorithm to nonscanned sensors, where targets form 
streaks within an image frame, is discussed in Section 2.4. 

2.1     Algorithm and Performance 

Binary integration, a technique that is well known in the radar community, is often referred to 
as an "M-out-of-N detector" [1, 2]. A variation of binary integration is also used in the Maximum 
Value Projection algorithm implemented on the Space-Based Visible processor [3]. 

The relationship between binary integration and other electro-optic signal processing functions 
is shown in Figure 16. Typically, sensor data may be corrected (e.g., for gamma circumvention in 
space applications) and, in the case of scanning sensors, time-delay integrated to improve target 
SNR. Most moving target detection algorithms also require some form of frame registration. The 
remainder, data normalization/quantization and velocity filtering, form the moving target detection 
algorithm. Binary integration addresses these last two parts. 

- 

190269 13 
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Figure 16. Signal processing functions. 

The binary integration approach may be divided into four steps: 

1. Data normalization 

2. Binary quantization 
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3. Integration (summation) over the velocity hypotheses 

4. Threshold detection of the integration results. 

Data may be normalized using a variety of techniques. The maximum likelihood algorithm in 
Section 1 suggests that normalized data d»j,fc be obtained from unprocessed data rij,k according 
to 

di,j,k     =      -Tf  (12) 

1   £=? 

fc=0 

*h  =  ^EC^^-AM)3     , (14) 
Jb=0 

where i,j are the pixel indices and k is the image frame index. Binary quantized data 6^^ are 
then obtained by comparing dij^ with a fixed threshold t. 

,   0,   di ik<t 

i     ^\< (15) 
1,   d,ij<k > t 

The integration step is also called velocity filtering. Samples in (i,j,k) are integrated along 
a hypothesized target velocity vector. This velocity hypothesis corresponds to the velocity filter. 

The number of samples used in integration depends on sensor type. For a scanning sensor, a 
target moves less than one pixel during the time the target is scanned; however, the total scanning 
time of a frame is typically large enough so that a target moves several pixels from one frame to 
the next. Thus a target streak in (i,j,k) appears as a dotted instead of solid line. In this case, the 
integration step requires summing only 1 pixel/frame for spatially unresolved targets. 

Let Sij be the result of summing (integrating) over the data for a target that has initial 
position i,j and frame-to-frame velocity components u,v in the x,y directions. The result s:j is 
compared with a threshold in order to achieve a detection. (This summation and comparison is 
the M-out-of-N detector.) The quantity 5,-j is computed according to the formula1 

JIn general, velocity components u, v are floating point numbers; indices i + uk and j + vk are then 
taken to be the nearest integer values. This method is called nearest neighbor interpolation. 
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N-\ 
Si,j =   5Z bi+uk,j+vk,k • (16) 

The performance of the binary integration algorithm can be given in terms of the probabilities 
of detection and false alarm by computing the probability that s,j meets or exceeds the threshold 
M for a given SNR. Let p be the probability that a single normalized pixel exceeds threshold t, 

p   =    l-F^il^SNRi) (17) 

„    f    x      1   N -2   N -1   „XTT, \ 

Using the constant SNRj example discussed in Section 1, the probability of detection PD is obtained 
as the probability of a binomial random variable with parameter p having at least M occurrences 
out of N trials. 

PD   =   Pr{*j>M} (19) 

N    ( N \ 
=   £ )pm(i-p)N-m (20) 

m=M \  m  / 

The corresponding probability of false alarm PFA is obtained by setting SNRj = 0. 

The two thresholds, t and M, are usually chosen to maximize the PD for a particular operating 
point in terms of SNRj and PFA- This maximization can be performed by computing, for each 
possible value of M = 0,..., JV, the value of t that gives the desired PFA- The (t, M) pair to be 
used is that which maximizes the value of PD for the required SNRj. 

As an example, consider N = 10 frames and let the operating point for this optimization be 
PFA = 10~8 and SNRj = 10. The maximization of PD yields M = 7 and t = 3.310. Probabilities 
of detection and false alarm can be plotted for a constant M or t. 

Figure 17 shows the probability of detection as a function of t, the single pixel threshold, for 
M — 1 and several different SNRj. Figure 18 shows the false alarm probability. 

Figure 19 shows the probability of detection as a function of M, for t = 3.310 and several 
different SNRj. Figure 20 shows the false alarm probability. 

A comparison of Figure 17 with Figure 11 indicates the loss in SNR for the binary integration 
algorithm. For the specified PFA = 10~8, the binary algorithm requires less than 11-dB SNRj target 
to achieve the same detection probability as the full precision maximum likelihood algorithm with 
a 10-dB SNRj target, indicating a loss less than 1-dB. This loss is similar to that obtained when 
binary integration is used in radar processing [1, 2]. 
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Figure 17.    Probability of detection for binary integrator, N = 10 frames, M = 7. 

Figure 18.    Probability of false alarm for binary integrator, N = 10 frames, M = 7. 
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Figure 19.    Probability of detection for binary integrator, N = 10 frames, t = 3.310. 

Figure SO.    Probability of false alarm for binary integrator, N = 10 frames, t = 3.310. 
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2.2     Efficient Integration Algorithm 

Computationally, the most intensive step is integration. Efficiency is attained by reducing 
the number of data accesses required in testing a given velocity hypothesis on many possible target 
positions. 

Let Ms, My be the frame size in the x, y dimensions, respectively. There are ~ MxMy possible 
initial target positions. For each velocity hypothesis, integration and detection of N data frames 
can be accomplished straightforwardly by summing N samples (one from each frame) for each 
possible target position. This method requires MxMyN additions or comparisons and MxMyN 
data accesses. The objective of the algorithm presented here is to reduce the number of data 
accesses to MxMy and to perform N additions with each. Thus it will be shown that the MxMy 

possible initial target positions can be tested at an average cost of only one data access per test. The 
algorithm derivation that follows is rather mathematical and may be skipped in favor of reading 
the step-by-step description given at the end of this section. 

The first step is to pack N frames of binary data into iV-bit integers, a.j, 

N-l 

a.,i = E b^2k        > (21) 
jfc=o 

where 

0 < z < Mx (22) 

0 < j < My . (23) 

The above formula for st)J can be written as 

N-l 
si,j =  E Bk(ai+uk,j+vk) , (24) 

where Bk{z) is bit k of z. 

Now consider the computation of 8i+uj+v. 

N-l 

Si+u,j+v    =     2J Bk(a.i+u+uk,j+v+vk) (25) 
it=0 

N 

=     E-Bfc-l(a«+ujt.J+ufc) (26) 
Jt=l 
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It is important to note that N — 1 of the data accesses required (that is, indices of a%j) are 
identical between s,j and s,+U)j+„. If the two summations can be performed simultaneously (which 
is possible, using the architecture described in Section 2.3), then accessing a single additional 
composite data sample permits an additional integrator output to be computed. This idea can be 
carried forward so that each additional data access permits an additional integrator output to be 
computed. 

This savings can be generalized. For simplicity, assume that u > 0 and v > 0. (The algorithm 
can be applied to negative velocities as well.) Note that 

N+n-l 

Si+nu,j+nv —      ^     Bk-n(ai+uk,j+vk) • (27) 
fc=n 

For each i,j pair a set of integrator outputs can be computed for some range of n. One needs to 
consider the set of i,j indices and the range of n. The set of i,j is easily determined. Assuming 
that all possible values of n are to be used, it is only necessary to search set S, 

S = {(»',.?'); 0 < * < tt or 0 < j < v}       . (28) 

This set is illustrated by the dotted region in Figure 21. Initial target positions outside this set are 
obtained for values of n ^ 0.2 For example, the black circle within the dotted region indicates a 
particular i,j pair with n = 0. Values of n > 0 correspond to initial target positions indicated by 
the sequence of black circles in the clear region. 

The range of n can now be computed. If the desire is to detect only those targets that do not 
enter or exit the field of view during the N frames, then the maximum value of n is determined by 
restricting n so that the indices t + uk, j + vk in Equation (27) satisfy 

0 <    i + uk   < Mx - 0.5 

0 <   j + vk   < My - 0.5       . (29) 

In this case 

2This statement is not completely accurate; because u and v are floating point numbers and nearest 
neighbor interpolation is used, it is possible to miss some initial positions. These omissions can be 
eliminated by using the set S = {(i, j); 0 < i < u or 0 < j < v} at the expense of duplicating some 
initial positions. This additional expense is small relative to the overall cost. 
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Figure 21.    Search region for i,j. 

Mx-1 

0 < n < nun [ , —  I - (N - 1) (30) 

for u ^ 0 and v ^ 0.   [If either u = 0 or c = 0, then the appropriate fraction is deleted from 
Equation (30).] The number of integrator outputs computed for a given i,j pair is then3 

min 
( 

Mx - 0.5 - i  My- 0.5 - j 

) 
-(N-l) (31) 

The number of data accesses [i.e., values of k determined from the bounds in Equation (29)] is 

(«.-"-',*t-"-J)|    , m min 

3The notation \x~\ is used to indicate the ceiling of x, the smallest integer that is greater than or 
equal to x. Similarly, [zj is the floor of x, the largest integer that is less than or equal to x. 
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and the ratio of outputs computed per data access is 

1 ^Zi  ,33) 
rmin((Mx - 0.5 - i)/u, (My - 0.5 - j)/v)\ ' K    J 

This ratio approaches unity as the frame size becomes much larger than the distance a target moves 
from one frame to the next. 

Alternatively, the range of n may be chosen to include those targets that enter or exit the field 
of view during the N frames. Admittedly, such targets must have a higher SNR to be detected. In 
this case the range of n is determined by the bounds 

0    <    i + u(N + n-l) (34) 

0   <   j + v(N + n - 1) (35) 

i + un   <   Mx-0.5 (36) 

j + vn   <   My- 0.5       , (37) 

which give the following range on n. 

max (^     AT     »  1      AT     J\ ^               {Mx-0.5-i  My - 0.5-j\ (l-*--,l-tf--J<n<mm( ,-JL-- ^ (38) 

Given the bounds on i,j and noting that n is an integer, the lower bound on n can easily be shown 
to be 1 — N so that the range of n becomes 

,      .. ^ (Mx - 0.5 - i My - 0.5 -j\ 
1-N<n<rmn( ,-I— 1)        . (39) 

The number of integrator outputs computed for a given i,j pair is the number of values of n in the 
above equation, 

f       /Mx-0.5-i  My- 0.5 -Al      ..    , 
|mm( ,-t- >-)\+N-l       . (40) 

The number of data accesses is identical to the previous case. The ratio of outputs per data access 
in this case is then 

 N -1  
+ \mm((Mx - 0.5-i)/u, (My-0.5-j)/v)] ' (41) 
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which is clearly greater than unity. 

The resulting algorithm, which tests a given velocity hypothesis, is described in this series. 

1. Let N be the number of image frames, each with size Mx,My in the x,y dimensions. 

2. Let M be the detection threshold (i.e., the number of binary quantized frames in 
which a target must appear in order to have a detection). 

3. Let aij be the composite of the binary data for pixel i,j and all frames, as described 
in Equation (21). 

4. Let u,v be the frame-to-frame target movement in x,y for the desired velocity hy- 
pothesis, u > 0 and v > 0. 

5. For each pair i,j such that 0 < t < u or 0 < j < v, do the following: 

(a) Set Zk = 0forfc = 1,...,JV — 1. 

(b) Let L = \min((Mx - 0.5 - i)/u, {My - 0.5 - j)/v)] - 1. 

(c) For n = 0,..., X, do the following: 

i. 5,+(n_Ar+i)u,j+(n-N+i)v = zN-i + BN-i(ai+nu,j+nv)- Compare this result 
with threshold M. 

ii. For m = N- 1,...,2 set zm = zm-X + Bm-^ai+n^j+ny). 

iii. Set z\ = B0(ai+nuj+nv). 

(d) Forn = L + l,.. .,L + N-l, the outcome is si+{n_N+1)uJ+{n_N+1)v = zN+L-n- 
Compare this result with threshold M. 

2.3    Architecture for Binary Integration 

An architecture that implements the binary integration algorithm is shown in Figure 22. For 
a given t,j pair, this algorithm computes the Si+nuj+nv. The top row of adders and registers is used 
to implement the sums and partial sums X\t... ,Zfj-\. The subtracter compares the result z;v-i 
with the threshold M. Threshold crossings are stored in a FIFO with an index (counter output). 

The bottom portion of Figure 22 generates the necessary addresses. The register stores a 
base address corresponding to the particular i,j pair in use. The counter generates the sequence 
n = 0,... to be used as an address to an offsets table, which is loaded from an external processor 
and contains the memory offsets corresponding to the pixel offset nu,nv. The table only needs to 
be changed when the velocity vector is changed. Finally, the adder combines the base address with 
the necessary offset, producing the memory address. 

Operation of this architecture is straightforward. Initially, the top row of registers and the 
FIFO are set to zero. With each computation cycle the counter drives the address generation 
portion to access a particular word of memory.   The composite binary sample at this address is 
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Figure 22.     Architecture for integration step of algorithm. 

presented to the inputs Bo,.. .,BN-I- These bits are added to the partial sums that are available 
from the register outputs. The output of the right-most register contains the completed sum, which 
is compared with the threshold M. At the end of each computation cycle, the adder outputs are 
stored in the registers, detections are stored in the FIFO, and the counter is incremented. Step 5(d) 
of the algorithm is implemented by reading N — 1 words of zeros from memory. These zeros can 
be accessed by storing appropriate values in the offset table.4 Note that the final register contents 
are all zeros so that the adder pipeline is initialized for the next i,j pair. 

For typical parameter values, this architecture can be implemented in a small ASIC. For 
example, suppose N < 16, MxMy < 106, and max(Afx,Afy) < 4,000. In this case the typical 
requirements are listed in Table 1. A 24-bit address bus is assumed for the memory. The FIFO 
depth is arbitrarily set to 256 words, although 64 might be sufficient. The left-most registers and 
adders require fewer bits than the right-most. It is clear that the circuit requirements are small. 

Note that the architecture in Figure 22 is easily modified to permit the cascading of several 
such ASICs for large numbers of frames. In this case the input to the left-most register is now the 
output of an adder that has Bo and an off-chip datum as inputs. In addition, the output of the 
right-most register is sent off-chip. Thus the top portion of additional ASICs may be cascaded with 
the final ASIC, which also performs detection and address generation. With this extension scheme, 
the limit on the total number of frames is set by the width of the registers, adders, and FIFO. 

The velocity filter architecture is shown fitted into a signal processor architecture in Fig- 
ure 23. There is a dual port memory for storing the data prior to registration, normalization, and 

'High speed operation may require using pipeline registers at the address output and the Bk inputs. 
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TABLE 1 

Architecture Component Requirements 

Item Amount 

Register 78 bits 

Adder (1 bit + ifc bit) 49 bits 

Adder/Subtracter 29 bits 

Counter 12 bits 

RAM (offset table) 4K words x 20 bits 

FIFO 256 words x 18 bits 

quantization. A smaller memory (a single frame's worth) is used to separately store the binary 
quantized data. The CPU and a separate memory share a second bus, which allows the CPU to 
perform other computations while the velocity filter is in operation. 

MEMORY: 
mjffWy/V 

WORDS 

MEMORY: 
MxMy 

WORDS 

VELOCITY 
FILTER MEMORY 

FROM SENSOR AND DATA CORRECTION 

TO DATA PROCESSOR 

Figure S3.    Architecture for binary integration. 

To achieve sufficient processing performance, it may be necessary to have several velocity 
filters operating in parallel. One method for four filters (suggested by A. H. Huntoon) is shown in 
Figure 24. The composite memory is divided into a number of submemories equal to the number 
of velocity filters.  Each submemory is assigned a contiguous set of columns of image data.  The 
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Figure 24-    Parallel architecture for binary integration. 

memories are connected to the velocity filters through a data exchange circuit. The sequence of 
tested target positions can be arranged so that during each memory access cycle, each velocity filter 
needs data from a separate submemory. In this case the (i, j) search region will be different from 
that depicted in Figure 21. 

2.4    Extending the Algorithm to Nonscanning Sensors 

With a scanned sensor, a moving target is expected to move less than one pixel during the 
time the target is scanned for a single frame. Thus unresolved targets only illuminate a single pixel 
per frame. 

Nonscanned sensors are somewhat different because all pixels are collecting data during the 
entire frame time. The result is that in addition to the frame-to-frame motion expected for a 
moving target, the target moves within a frame, producing a streak or straight line within each 
frame. Thus a binary integration algorithm must sum over several pixels within each frame. 
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One approach to summing multiple pixels per frame is to implement the algorithm and ar- 
chitecture described above to account for the frame-to-frame motion, then combine outputs from 
the velocity filter to sum over multiple pixels per streak. This combining could be implemented in 
an ASIC, but is probably easier to implement in the CPU shown in Figure 23. 

This algorithm is described by the following sequence. The basic idea is to form a one- 
dimensional output from the frame-to-frame portion of the velocity filter, which can then be con- 
volved with a filter representing the moving target within a frame. The algorithm and architecture 
described earlier are used to obtain the one-dimensional data needed for the convolution. 

1. Let u,v be the frame-to-frame movement in x,y for the desired velocity hypothesis, 
u > 0 and v > 0. 

2. Let 6 = arctan(u/u) and h = y/{u2 + v2). The angle of the velocity vector is 9, and 
h is the length of that vector. The terms cos(0) and sin(0) may be computed here 
for later use. 

3. Choose an initial point a,/3 for the integration, similar to i,j in the algorithm de- 
scribed in Section 2.3. In this case it is necessary to have either a = 0 or /? = 0, and 
0 < a < u and 0 < /? < v. 

4. For / = 0,..., h — 1, do the following: 

(a) Let i = a + I cos(0) and j = (3 + I sin(0). 

(b) Let the binary detection threshold be zero, M = 0. 

(c) Implement the algorithm described in Section 2.3, using the architecture in 
Figure 22 with the values of i,j and M specified above. 

(d) Outputs Si+nU<j+nv are saved according to: fl+hn = si+nu<j+nv. 

5. The one-dimensional data set fn is an ordered sequence of outputs from convolving 
the frame-to-frame portion of the velocity filter with the data. The complete velocity 
filter output is computed by the convolution /„ * gn, where gn = {1,...,1} is a 
sequence of h ones representing the target streak within a frame. 

6. The output of the convolution is compared with the desired M-out-of-N detection 
threshold. 

This algorithm may be viewed as postprocessing the result of the algorithm described in Sec- 
tions 2.2 and 2.3. Postprocessing is a convolution by a rectangular window that can be implemented 
efficiently by sliding the window (adding one data point and subtracting another) without the need 
for an FFT approach. 
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3.   CONCLUSION 

A maximum likelihood moving target detection algorithm is derived based on a Gaussian 
model. Data samples are assumed to be temporally stationary, implying that image frames are reg- 
istered and that there is no moving clutter. Data samples are allowed to be spatially nonstationary, 
corresponding to nonuniform background clutter. 

In Section 1, the probability distribution of normalized experimental data is shown to agree 
closely with theoretical predictions. This agreement holds for a variety of clutter backgrounds 
(provided the temporal stationarity requirement is met) and validates studying the theoretical 
model as a means of predicting system performance, which is evaluated in terms of the probabilities 
of detection and false alarm. 

In some system applications the computation and memory requirements of this algorithm 
may be large, particularly when either real-time processing or reduced processor size is required. 
A binary integration algorithm is developed in Section 2 to address these issues. Analyzing its 
detection and false alarm performance shows a 2-dB loss relative to the full-precision algorithm that 
is discussed in Section 1. Similar results are obtained in radar applications. To efficiently implement 
the binary integration algorithm an architecture concept is described that takes advantage of a small 
ASIC to perform the bulk of the computation. 

One of many areas open for further research is frame registration; in many system appli- 
cations the sensor is moving, requiring registration for sequential frames. Potential effects to be 
compensated include translation, scaling, and geometric distortion, and strongly depend on sensor 
design. Other registration issues arise due to moving (or apparently moving) clutter. In this case 
the entire frame is not adjusted; instead the clutter region must be selectively corrected. Difficulties 
arise along the edges of the moving clutter. 

Another research area is incorporating target statistics models into the detection algorithm. 
The maximum likelihood algorithm described in Section 1 permits a single data sample of suffi- 
cient amplitude to cause a detection. An algorithm that requires a more distributed target signal 
component might offer improved performance. 

Adapting the maximum likelihood algorithm to time-varying clutter backgrounds also requires 
further work. Not all backgrounds (e.g., sea glint) satisfy the temporal stationarity requirement. 
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APPENDIX    A 
MAXIMUM LIKELIHOOD ALGORITHM DERD7ATION 

A maximum likelihood algorithm (presented briefly in an earlier paper [3]) is developed for 
moving target detection. The following provides a more detailed derivation, using the model that (in 
the absence of targets) pixel samples are independent normal random variables that are temporally 
stationary. In other words, the underlying mean and variance of any given pixel is assumed constant 
from frame to frame. These means and variances are considered to be unknown and to vary spatially 
(i.e., from pixel to pixel). 

This model is based on independent arrival of photons in each detector (a Poisson random 
variable approximated as normal). The average photon count in a given detector corresponds to 
the image intensity. The variance in the photon count is referred to as "photon noise." Additional 
sources are thermal and readout noise, which are also assumed to be independent from sample to 
sample. 

Stationarity over time implies that all frames in a sequence are spatially registered and that 
there is no moving clutter. Nonstationary spatial statistics arise due to the nonuniform intensity 
of the background scene. 

Prior to the algorithm derivation, it is useful to establish a notation that simplifies the equa- 
tions. Unprocessed image data are represented by r,,^, where (i,j) are the spatial indices and (k) 
is the temporal index. The set of indices that represent a given target motion hypothesis is denoted 
by S. It is assumed that the target moves a minimum of one pixel between frames. Set S contains 
M members with each member corresponding to a different pixel, (i,j).5 

A simplified notation is used for the N frames of the M pixels in 5. Pixel coordinates are 
mapped to a single sequential index. Additionally, the temporal index is permuted so that the 
hypothesized target is in those samples that have a temporal index of zero. To define this notation, 
let the pixels in S be represented by the triplet (im,jm,km) for 0 << M. Data samples from these 
M pixels and N frames are represented by pm<n, where 

Pm,n    =    rim<jm<i (A.l) 

/   =    (n + A:m)mod N (A.2) 

and 0 < m < M, 0 < n < N. 

5For a scanning sensor, an unresolved target occupies one pixel per frame, giving M — N. For 
a staring sensor, the target may move during the observation time and occupy several pixels per 
frame, giving M > N. 
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For the sample />m,n, the unknown mean and variance of the noise are /im and cr£,, respectively. 
The unknown target component of pm,o is sm. 

The goal in this derivation is to develop a likelihood function to be tested in choosing between 
two hypotheses. Let H\ be the hypothesis that a target is present, and let HQ be the hypothesis 
that no target is present. The probability density of receiving data pitk, given hypothesis Hn, is 

fP({Pi,k}\Hn)       . (A.3) 

The likelihood function, A, is defined as the ratio of this density for the two hypotheses, where the 
densities are maximized over the unknown parameters for clutter and signal [4]. 

A= 
max{^.^„»,}//'(Kfc}l^i) (A4) 

max{/iti(7i}/p({/)t,fc}|/ro) 

The numerator is maximized over the set of /*,-, CTJ, and s, for 0 < i < M. Similarly, the denominator 
is maximized over the set of m and <T, for 0 < i < M. 

The maximization of the denominator is derived first. Because the p,^ are independent 
normal random variables, the density fp is 

M-iN-i       , 
fP({Pi,k}\H0) =  I]   H-—=^V(-{pi,k-liifl2a2

i)        . (A.5) 
i=0   k=0   v/27TCrt- 

Taking the partial derivative of this function with respect to the parameter m gives 

°   t  - t   ST Pi'k ~ &. i A a\ JT-fp ~ JP 2^ —Z2—        > (A.6) 

where, for convenience, the argument to the function fp is dropped. When this partial derivative 
is set to zero, it is seen that fp is maximized when /i, = a,, where 

j  N-l 

Jfc=0 

Similarly, substituting a, for /i, and taking the partial derivative of fp with respect to the 
parameter cf gives 
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6 U = /. f <»*-«>•-?        . (A.8) 

Setting Equation (A.8) to zero shows that fp is maximized for of = Ci, where 

« = 7r £(**-«)*       • (A-9) 
k=0 

Finding the values of //,, <r,, and s, that maximize the numerator of Equation (A.4) is more 
complex. In this case the density fp is given by 

M-1N-1        , 
fp({Pi.k)\Hi) =  II   II -7==exp(-(^-/z,-^(A:))2/2at

2)        , (A.10) 
i=0   k=0   y 27T<72 

where £(fc) is the Dirac delta function, defined to be unity for k = 0, and zero elsewhere.  Taking 
the partial derivative of fp with respect to these three parameters yields the following equations: 

^fp = l£"^—srj'' (   } 

j_f    ({*» - w - *.)2 - *? i y1 (P.-,* - M.)2 - *n f ,A19* 
fc=i 

d , Pi,o - m - s 
h.h   =    **-»-" h       • (A-13) 

Setting Equations (A.11), (A.12), and (A.13) to zero and solving the results simultaneously shows 
that fp is maximized for 

Hi    =    Ui (A.14) 

<r2    =   Vi (A.15) 

Si    =   Wi       , (A.16) 

where 

7V-1 

m    = 
,       7V-1 

N    -w 
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j   N-l 

Wi    =    p,,o - Ui 

(A.18) 

(A.19) 

Note that Equations (A.17) and (A.18) are different, particularly in the limits of the summations, 
from (A.7) and (A.9). 

Substituting the density functions in Equations (A.5) and (A. 10) into Equation (A.4) gives 
the following expression for the likelihood function when the numerator and denominator are max- 
imized: 

M-\ 

A = 
m~0 

M-l n& 
v-N,2Tti£*v(-(pi,k-Ui)V2v) 

c-^anLo«p(-(P<,*-«.)2/2c) 

It is often easier to work with the logarithm of the likelihood function, which is 

C   =   ln(A) 

M-\ 

t'=0 *•©-! 
\2       N-l 

(p,,fc - "«•)       y*1 (p«,fc - a,)2 

2v, it=o 2c, 

This equation is simplified by first noting from Equations (A.9) and (A.18) that 

N-\ 
Y (pi,k - a»)2 _ y-1 (pi,k - n,-)2 _ 

fc=0 
2c, 

Jt=i 
2u, 

Further simplification is obtained using the approximation 

ln(l -f x) « x 

for |x| «C 1. The logarithm term in Equation (A.21) is then approximated by 

1     (pi,o-ai)2\ 
In (!) = H'"^ c, 

-1   (p,-,o-a,)2 

A^ - 1        c, 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 
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In evaluating the accuracy of this approximation, note that s? = (pt)o — a,)2 is an estimate of the 
target power in pixel i, and &f = c, is an estimate of the noise power. Thus the approximation 
is valid when the SNR is much smaller than the number of frames processed.6 The resulting 
log-likelihood function is 

£-2(N-l)^Q c, • (A'27) 

The resulting maximum likelihood detection algorithm can now be stated as 

Hi   if   C > t (A.28) 

H0   ii   £<t       , (A.29) 

where t is the detection threshold (often set for a constant false alarm rate criterion) and where, 
using the original notation Tijjt for unprocessed data samples, 

£    =       £    di<jtk (A.30) 
(i,J,k)€S 

dij,k   =    (r"J-yi)2 (A.31) 

x   N-l 

A..j = T^E 
r«-.;.* (A-32) 

Jt=0 

*l   =    ^EVwAy)1       • (A-33) 
fc=o 

Set S is the set of spatial-temporal indices, (i,j,k), corresponding to the target motion hypothesis 
H\. The constant multiplier in Equation (A.27) is dropped, noting that the constant can be 
incorporated into the detection threshold. The term /ifj is the sample mean of TV temporal samples 
of pixel (i,j). The term ajj is the sample variance of the same N temporal samples of pixel (t,j). 

6In the case where the SNR is not much smaller than the number of frames, the approximation to 
the log-likelihood function is less accurate. In such cases, however, the SNR is large and some loss 
can be tolerated. 
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The term d»j,jfe is referred to as the "normalized" data. Finally, for this detection algorithm to be 
meaningful the number of frames processed must satisfy N > 3. 
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APPENDIX    B 
SINGLE PIXEL PROBABILITY DISTRIBUTIONS 

The normalized data in the maximum likelihood electro-optic moving target detection algo- 
rithm is shown to have a beta distribution, which is used to determine the detection threshold, 
probability of false alarm, and probability of detection for both the full precision maximum likeli- 
hood detection and the binary integrator. 

The log-likelihood function C of the maximum likelihood algorithm is expressed as the sum 
of normalized data dijtk, where 

C   =      £   iujk (B.l) 
(«J,*)€S 

di,j,k   =     -Tf  (B.2) 

1   N-l 

&J  =  7?Er«.i.« (B-3) 
n=0 

n=0 

and 5 is the set of space (i,j) and time (k) indices corresponding to the target motion hypothesis. 

The probability distribution Fd(x\N) of dijj, is shown to follow a beta distribution for the 
noise-only case and a noncentral beta distribution when a target is present. For the radar case, 
where [i is known a priori to be zero and where Tijj, is complex, this distribution is well known [5]. 

B.l     Distribution for Noise Only (No Target) 

The direction taken is to relate the distribution Fd(x\N) of dijje to the beta distribution. For 
notational simplicity, the pixel indices (i,j) will be dropped because they never change during the 
derivation. 

The beta probability density function (pdf) with parameters a and j3 is 

/flW^) = w)ia"1(1-ir (B-5) 

for 0 < i < 1, and /e(a:|a,/?) = 0 elsewhere.  If X\ and X2 are independent chi-square random 
variables with v\ and i>2 degrees of freedom respectively, then the ratio 
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Xi + X2 
(B.6) 

has the beta distribution 

FB[X 
2' 2 ) 

(B.7) 

The random variable dk can be written in a form similar to Equation (B.6) by using a linear 
transformation of independent random variables. Let Q be an orthogonal N x N matrix, and let u. 
be a length-N vector of independent standard normal random variables (i.e., zero mean and unity 
variance), where the nth element is 

Un   = 
Tn - M 

(B.8) 

for 0 < n < N. Then the vector 

v = Qu (B.9) 

is also a vector of independent standard normal random variables vn, where 0 < n < N. 

Many possible orthogonal matrices can be constructed. Let the first and second rows of Q be 

— —1 (B.10) 

and 

\-k   [N''"'N\)^N-\ (B.ll) 

where ek is a vector with a one in the fcth position and zeros elsewhere. It is easy to verify that 
these two rows are orthogonal, and each has unity norm as is necessary for Q to be orthogonal. 

Let u represent the sample average of the u„, 

j JV-1 

N 
(B.12) 

n=0 
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It is easy to show that 

v0   =    uy/N (B.13) 

N-l N-l 

E"n      =       E«n • (B.15) 
n=0 n=0 

The transformation of independent standard normal random variables is next used to derive 
the distribution of dk- Note that (r^ — p.) is related to un by 

(rn - /2) = (un - u)a        . (B.16) 

This equality, along with Equations (B.13) and (B.15), is used to give the following relation between 
the denominator in the definition of dk in Equation (B.2) and the vn: 

N-l N-l 

n=0 n=0 

(N-l 

-ivs2 + £ ul 
n=0 

N-l 

=     *2£Vn • (B.17) 
n=l 

Combining Equations (B.2), (B.4), (B.14), and (B.17) gives the following representation for d^. 

fa ~ ^ 
E^(r«-/i)a 

4   =    ^f^--iV (B.18) 

r;2 

^TT^-1)        • (B-19) 

Because the vn are independent and have standard normal distribution, the term v\ is chi-square 
with one degree of freedom, and Yln=2 vn 1S chi-square with N — 2 degrees of freedom. Referring 
to Equation (B.6), it is clear that dk has the beta distribution 
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««W-»(J£T|5-*T2)      • <B-2°> 

where 

0<x<iV-l        . (B.21) 

B.2     Distribution with Target 

The probability distribution of a normalized pixel with a target present is shown to be a 
noncentral beta distribution. In this case the chi-square random variable in the numerator of 
Equation (B.6) is derived from normal distributed random variables with nonzero means. As in 
Section B.l, a linear transformation is applied to the data to obtain the desired form. 

Let s be the target component of the data sample r^, and define y, to be a length TV vector 
formed from the data samples, where 

un = '""^"^        • (B.22) 
a 

These un are independent normal random variables with unity variance and nonzero mean. 

Let Q be the orthogonal matrix defined in Section B.l. Then the vector 

11 = QlL (B.23) 

is also a vector of independent normal random variables with unity variance and nonzero mean. 
The derivation outlined in Equations (B.12) through (B.19) is repeated to show again that 

^-TTsbtf*-1'    • (B'24) 

It will be shown that v\ is a noncentral chi-square random variable with one degree of freedom, and 
Y,n=2 vn is a central chi-square random variable with N - 2 degrees of freedom. The normalized 
data dk then have a noncentral beta distribution. 

From Equations (B.13) and (B.14), the means of the random variables VQ and v\ are 

E{v0}    -   0 (B.25) 
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The means of the remaining vn are shown to be zero by evaluating the sum of the squares of the 
means of the vn, using Equations (B.25) and (B.26). 

£)*{*}•    =    ££K}2 (B.27) 
n=l n=0 

JV-1 

n=0 

S2 N - 1 

=    ££K}2 (B.28) 

(B.29) 
a2    N 

=   E{Vl}
2 (B.30) 

Subtracting E{v\}2 from both sides of Equation (B.30) proves that only v\ has nonzero mean. 
Thus Equation (B.24) indicates that dk has the noncentral beta distribution given by 

F,(x|iV,A) = FB, (^|i,^,A) , (B.31) 

where 

0 < x < N - 1        , (B.32) 

and A is the noncentrality parameter 

The noncentral beta distribution can be written in terms of the central beta distribution 
according to 

FB>(x\a,0,\)=: f^e-x'2&££-FB(x\a + n,/3)       . (B.34) 
n=0 

This formula is easily derived from one that is similar for the noncentral F distribution ([6], p. 192). 
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It is interesting to note that for a given number of image frames TV, the noncentrality parame- 
ter A is the product of a constant with the signal-power to noise-power ratio s2/a2, which is referred 
to as an "instantaneous" signal-to-noise ratio, SNRj. A similar dependency occurs for many other 
detection problems. When the signal power is zero, the noncentral distribution in Equation (B.34) 
reduces to a single central beta distribution, as it should. 
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APPENDIX    C 
LIKELIHOOD FUNCTION STATISTICS 

The probability distribution of the log-likelihood function is needed to determine the proba- 
bilities of detection and false alarm for the maximum likelihood algorithm and is expressed in terms 
of the density function derived in Appendix B for normalized pixels. 

The log-likelihood function probability distribution Fc(x) depends on the SNR through the 
parameter A = ^^-SNRj in the single pixel distribution function, Fj(x\N, A). In computing the 
probability of false alarm, the SNRj is zero. In computing the probability of detection, the statistical 
distribution of SNRj should be taken into account in computing Fc{x). The distribution of SNRj 
depends on the statistics of receiving target photons as well as those of background clutter intensity. 
The approach taken here is to compute Fd(x\N,X) for constant SNRj. The results are useful in 
discussing target detection in terms of an effective signal-to-noise ratio, SNReg-, as described at the 
end of Section 1.4. 

The log-likelihood function C is the sum of normalized data dijy. 

(«Vi,*)€5 

where S is the set of coordinates for the target velocity hypothesis. The model used in the maximum 
likelihood derivation in Appendix A implies that dijjt are independent random variables; therefore, 
the density function fc{x) of C is the convolution of the densities of d,,j,jfc. The single pixel density 
function is obtained by differentiating Equation (B.31) with respect to x, yielding 

«x|A',A) = ^T/B.(^T|i,^,A)        , (C.2) 

where JB> is the noncentral beta density. 

Let M be the number of elements in the set S (i.e., M is the number of samples in the target 
motion hypothesis). The log-likelihood density function is then obtained as the convolution of M 
density functions, 

fc(x\N,\) = fd*---*fd(x\N,\)        . (C.3) 

The distribution function is the integral of the density function, which can also be expressed as a 
convolution of density functions with a unit step function, h(x), 

Fc(x\N,X)   =     f  fc(u\N,X)du (C.4) 
J—oo 
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=   h*fc(x\N,X) (C.5) 

=   h*fd*>>>*fd(x\N,X)       , (C.6) 

where 

Mx) = {  °'   '< ° • (C7) 
1,   x> 0 

The probabilities of detection and false alarm are the complement, 1 - Fc(x\N, A), of the 
distribution function and may be expressed as the convolutions 

PD(X\N,X)   =   (l-h)*fd*-.-*fd(x\N,\) (C.8) 

PFA(X\N)   =   (l-h)*fd*---*fd(x\N,X = 0)       , (C.9) 

where x is the detection threshold. Simple formulas for these probabilities are difficult to obtain. 
Convolutions can, however, be evaluated through numerical integration; the remainder of this 
appendix discusses the details. Results are plotted in Figure 11 where N = 10-frame processing for 
a scanning sensor (i.e., M — N). 

The Af-fold convolution in Equation (C.8) can be computed as an Mth order integral. The 
difficulty in such an integration is maintaining accuracy while computing numerical results in 
a reasonable time. The approach taken for each convolution is to sample the function to be 
integrated at uniform intervals along the i-axis and use Simpson's rule [7, 8] to compute the 
resulting convolution at these same sample points. This approach is applied M times in succession 
to obtain the final convolution. 

The first convolution in Equation (C.8) is easily shown to be 

(l-h)*fd(x\N,X)   =    l-Fd(x\N,X) (CIO) 

and can be computed without using numerical integration. This function, and each subsequent 
convolution of fd(x\N, X) with this function, is the complement of a probability distribution. 

Let A', a positive even number, be the number of sample intervals in the range 0 < x < N — 1, 
and let S be the sample interval, 

6=^        • (C.12) 
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For N > 3 the convolutions are computed by first defining two sample sequences, gn and un , 
where 

fd(n6\N,X),   n = l,...,K 

0, n> K 

(C.13) 

,(D    = =    < 

1, n <0 

0, n> K 

(C.14) 

The superscript (m) on uj,     indicates the number of convolutions represented by the sequence. 
Convolutions are computed using gn and u„    to produce u„      '. 

The parameter 7 is carefully chosen in the range 0 < 7 < 1 to avoid a singularity in fj(x\N, A). 
[For N = 3 the density fd(x\N, A) also has a singularity at x = 2.] As x approaches zero from above, 
this function approaches infinity. The parameter 7 is chosen so that when Simpson's rule is applied 
directly to the sequence gn, representing an approximation to integrating the density function 
fd(x\N, A), the result is very close to unity. For example, with N = 10, A = 0, K = 1,000, and 
7 = 0.0701267113512541, the result of applying Simpson's rule to gn is 1 + c, where |e| < 10"16. 

Higher order convolutions are computed according to the formula 

«f*> = 
1, 
S T-*miTi(mK,k) (m) . , 
3^2n=k-K    'Wn-k+KU'n'gk-n,     k = 1, 

0, 

k <0 
,(m+l)/r 

A; > (m + l)^ 

(C.15) 

for m = 1,..., M — 1, and where the weighting sequence wn used in Simpson's rule is given by 

min(mA', k) — (k - -K) WO,---, Wmin(mA',Jt)-(it-A') 

0 {1} 
1 {4,1} 

even {1,4,2,4,...,4,2,4,1} 

odd {4,2,4,...,4,2,4,1} 

(C.16) 
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Simpson's rule requires an even number of sampling intervals (or an odd number of sampling 
points). In the case where the number of intervals, min(mA', k) — (k — K), is odd, the additional 
term 

U>-I4-K--I0*+I (C-17) 

can be added to the summation in Equation (C.15) for u>_i = 1; however, <7A'+I = 0 and 

0 < uK
k_'K_1 < 1 so that this additional term is known to be zero and can be omitted from 

the summation. Accuracy of the result when use of this additional term is implied is ensured by 
noting that u„ represents samples of a continuous function for all n, and gn represents samples 
of a continuous function for n > 1 (when N > 3). 

The probability of detection is approximated by 

PD(n6\N,\)*:uM        . (C.18) 

The probability of false alarm is obtained with the same formula for the case A = 0. 
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